

PRECISION FLIGHT CONTROLS, INC.

# Modular Flight Deck

## Advanced Aviation Training Device

Revised January 2017

Qualification and Approval Guide (QAG)



Modular Flight Deck <sup>TM</sup> cockpit system shown with integrated 225 degree 5-channel visual system and 6 DOF Motion Platform

SHAWN M Digitally signed by SHAWN M HAYES Date: 2017.03.17 16:21:50 -04'00'

Shawn Hayes

FAA APPROVED QAG Signature and Date

Acting Manager, Airmen Training and Certification Branch AFS-810

## MFD Table of Contents

| Overvi  | ew Statement                                                  |
|---------|---------------------------------------------------------------|
| Overal  | Aviation Training Device (ATD) Description4-5                 |
| *       | Software/Hardware Compatibility Statement/Software Components |
| *       | Instruments and Indicators7-11                                |
| *       | Flight Deck and External Sounds/Intercom12                    |
| *       | Avionics                                                      |
| *       | Aircraft Flight and Engine Controls14                         |
| *       | Computer System Requirements15                                |
| *       | Instructor's Operating System (IOS)16-20                      |
| *       | Flight Dynamics                                               |
| *       | Statement of Compliance                                       |
| *       | Cockpit Features23                                            |
| *       | Cockpit Instrument Response                                   |
| Trainin | g Device Components List24-37                                 |
| Aviatio | on Training Device (ATD) Design Criteria List                 |
| Aircraf | t Configuration45-62                                          |
| *       | Weight and Balance63-102                                      |
| *       | Performance References for Validation Checks                  |
| Visual  | Systems/Screen Captures107                                    |
| ATD Fu  | Inctions and Maneuvers Checklist108-110                       |
| Import  | ant Notes                                                     |
| Contac  | t Information                                                 |

#### **Overview Statement**

This Qualification and Approval Guide (QAG) includes a detailed description of all components, functions, and capabilities for the Modular Flight Deck. This includes any optional aircraft configurations with quality pictures and diagrams. The required information as described in the current advisory circular, AC 61-136A / FAA Approval of Aviation Training Devices (ATD) and their use for training and experience required for FAA approval is contained within this document. This includes listing all the required qualifying items, functions, and capabilities.

This guide is used to clearly describe and verify the functionality of the aviation training device platform confirming its suitability for airman training and experience. A valid FAA Letter of Authorization (LOA) specifying the ATD allowances must also accompany the training device when utilized for airman training or experience requirements as specified in 14 CFR §61 or 141.

The ATD must maintain its performance and function without degradation. The operator of this device is expected to maintain its condition and functionally when used for airmen training or experience requirements. Only the configurations approved for this model, as described within this QAG, can be utilized when satisfying FAA experience or training requirements. Any additions, changes, or revisions to the model or to the available configurations described within this document must be approved in writing by The General Aviation and Commercial Division, AFS-800. Operators who use these trainers to satisfy FAA pilot training or experience requirements are obligated to allow FAA inspections ensuring training device compliance and approval.

Any questions concerning FAA approval or use of ATDs should be directed to the General Aviation and Commercial Division, AFS-800.

#### **Overall Aviation Training Device (ATD) Description**

The Modular Flight Deck closely represents the overall functionality, performance and instrumentation of single engine, multi-engine, turboprop and Jet aircraft. The platform consists of a cockpit section, instructor's station, visual display system and an audio system. It incorporates a combination of hardware and software components that is assembled and checked by Precision Flight Controls Inc. All hardware elements are permanently installed and designed so the cockpit has the appearance and feel of an actual aircraft. From the pilot's seated position, there are no computer hardware elements such as keyboards, pointing devices, etc. for his or her use.

The cockpit controls, switches, knobs and switch panels are replicas and located in the proper position and distance from the pilot's seated position are representative of the class of aircraft;

Primary flight and navigation instruments are life-sized that exhibit neither stepping nor excessive transport delay, and arranged so as to observe trends and provide a realistic scan pattern. All instruments are displayed on high resolution LCDs at 1024 X 768 or better resolution in millions of colors;

Integrated digital avionics complete with Autopilot, Nav/Com(s) ADF, DME, GPS(s), Transponder, Audio Panel and Altitude Pre-Selector;

An integrated five channel visual system that provides cues in both day and night, VFR/IFR, Airport environments, Enroute landscape and most weather conditions. The five channel integrated visual system consists of 1080p High Resolution LCD monitors.

The Modular Flight Deck provides a realistic generic cockpit design and provides an effective training environment for student and certificated pilots. This includes the capability of practicing scenario based flight training events, simulated equipment failures, normal and emergency procedures, pilot evaluations, instrument procedures/experience while facilitating increased pilot overall proficiency.

## Overall Aviation Training Device (ATD) Description (cont.)



Modular Flight Deck Cockpit



Modular Flight Deck (Shown With ProMotion 3 DOF (Degrees of Freedom) Motion Base And Integrated Visual System

## Software /Hardware Compatibility Statement

This is to certify that Lockheed X-Plane software has demonstrated that their software is compatible with the Modular Flight Deck AATD, and can assure that the communications/transport data latency is not greater than 200 milliseconds and all analog and digital input signals meet the performance criteria established for software performance by the ATD manufacturer.

## Software Components

The ATD utilizes several software programs:

- > X-Plane Professional version 8.0 or later
- Microsoft Windows
- > Linux
- Lockheed PREPAR3D
- Quantum3D









#### **Instruments and Indicators**

(1) Instruments and indicators replicated and properly located as appropriate to the aircraft represented:

(a) Flight instruments for analog in a standard configuration which represent traditional "round" flight instruments or electronic primary flight displays (PFD) and multi-function displays with reversionary and backup flight instruments.

(b) A sensitive altimeter with incremental markings each 20 feet or less, operable throughout the normal operating range of the aircraft or family of aircraft represented.

(c) A magnetic direction indicator.

(d) A heading indicator with incremental markings each 5 degrees or less, displayed on a 360 degree circle. Arc segments of less than 360 degrees may be selectively displayed if desired or required, as applicable to the aircraft or family of aircraft represented.

(e) An airspeed indicator with incremental markings as shown on the aircraft or family of aircraft represented; airspeed markings of less than 40 knots may not be displayed.

(f) A vertical speed indicator with incremental markings each 100 fpm for both climb and descent, for the first 1,000 feet per minute (fpm) of climb and descent, and at each 500 fpm climb and descent for the remainder of a minimum  $\pm 2,000$  fpm total display, or as applicable to the aircraft or family of aircraft being represented.

(g) A gyroscopic rate-of-turn indicator or equivalent with appropriate markings for a rate of 3 degrees per second turn for left and right turns. If a turn and bank indicator is used, the 3 degrees per second rate index must be inside of the maximum deflection of the indicator.

(h) A slip and skid indicator with coordination information displayed in the conventional skid ball format where a coordinated flight condition is indicated with the ball in the center position.

(i) An attitude indicator with incremental markings each 5 degrees of pitch or less, from 20 degree pitch up to 40 degree pitch down or as applicable to the aircraft or family of aircraft represented. Bank angles are identified at "wings level" and at 10, 20, 30, and 60 degrees of bank (with an optional additional identification at 45 degrees) in left and right banks.

(j) Engine instruments as applicable to the aircraft or family of aircraft being represented, providing markings for normal ranges and minimum and maximum limits.

(k) A suction gauge or instrument pressure gauge with a display applicable to the aircraft represented.

#### Instruments and Indicators (cont.)

(I) A flap setting indicator that displays the current flap setting. Setting indications are typical of that found in an actual aircraft.

(m) A pitch trim indicator with a display that shows zero trim and appropriate indices of airplane nose down and airplane nose up trim, as would be found in an aircraft.

(n) Communication radio(s) with display(s) of the radio frequency in use.

(o) Navigation radio(s) capable of replicating both precision and nonprecision instruments, including approach procedures (each with an aural identification feature), and a marker beacon receiver. An instrument landing system (ILS), non-directional radio beacon (NDB), Global Positioning System (GPS), Localizer (LOC) or Very high frequency Omnidirectional Range (VOR). Graduated markings as indicated below must be present on each course deviation indicator (CDI) as applicable. The markings include:

- One-half dot or less for course/glideslope (GS) deviation (i.e., VOR, LOC, or ILS), and
- Five degrees or less for bearing deviation for automatic direction finder (ADF) and radio magnetic indicator (RMI), as applicable.

(**p**) A clock with incremental markings for each minute and second, or a timer with a display of minutes and seconds.

(q) A transponder that displays the current transponder setting.

(r) A fuel quantity indicator(s) that displays the fuel remaining, either in analog or digital format, appropriate for the aircraft or family of aircraft represented.

NOTE: The minimum instrument and equipment requirements specified under 14 CFR part 91, § 91.205 for day visual flights rules (VFR) and instrument flight rules (IFR) are functional during the training session.

(2) All instrument displays listed above must be visible during all flight operations. Allowances can be made for multifunction electronic displays that may not display all instruments simultaneously. The update rate of all displays must provide an image of the instrument that:

- (a) Does not appear to be out of focus or illegible.
- (b) Does not appear to "jump" or "step" to a distracting degree during operation.
- (c) Does not appear with distracting jagged lines or edges.
- (d) Does not appear to lag relative to the action and use of the flight controls.

#### Instruments and Indicators (cont.)

(3) Control inputs are reflected by the flight instruments in real time and without a perceived delay in action. Display updates display all changes (within the total range of the replicated instrument) that are equal to or greater than the values stated below:

- (a) Airspeed indicator: change of 5 knots.
- (b) Attitude indicator: change of 2 degrees in pitch and bank.
- (c) Altimeter: change of 10 feet.
- (d) Turn and bank: change of ¼ standard rate turn.
- (e) Heading indicator: change of 2 degrees.
- (f) Vertical speed indicator (VSI): change of 100 fpm.
- (g) Tachometer: change of 25 rpm or 2 percent of turbine speed.
- (h) VOR/ILS: change of 1 degree for VOR or ¼ of 1 degree for ILS.
- (i) ADF: change of 2 degrees.
- (j) GPS: change as appropriate for the model of GPS based navigator represented.
- (k) Clock or timer: change of 1 second.

(4) Displays reflect dynamic behavior of an actual aircraft display (e.g., a VSI reading of 500 fpm reflect a corresponding movement in altimeter and an increase in power reflects an increase in the rpm indication or power indicator.)

**Flight instruments panels include** (as per aircraft requirements): airspeed indicator, altimeter, radar altimeter, magnetic compass, OBS 1, OBS 2, ADF, DME, RMI, directional gyro, vertical speed indicator, vacuum, outside air temp, fuel tank gauge(s), alternator amps, bus amps, battery, flaps position indicator, cowl flaps position indicators, flight management annunciator and altitude pre-select.

**Engine instruments** (as per aircraft requirements): manifold pressure gauge(s), RPM gauge(s), fuel flow gauge(s), CHT, EGT, oil temp, oil pressure, ITT, TIT, and propeller sync.

- All aircraft modules have an adjustable altimeter that operates throughout the normal operating range of the aircraft being replicated.
- All aircraft modules have a heading indicator with incremental markings of 5 degrees and display on a 360 degree circle.
- All aircraft modules have an airspeed indicator with incremental markings appropriate to the aircraft being replicated.

#### > Instruments and Indicators (cont.)

- All aircraft modules have vertical speed indicators with markings appropriate to the aircraft being replicated.
- All aircraft modules have a turn-and-bank indicator with incremental markings of 3 degrees per second turn for left and right turns and the 3 degree index is inside the maximum deflection of the indicator.
- All aircraft modules have a skid and slip indicator with coordination information displayed in the conventional skid ball format with markings for the center position.
- All aircraft modules have attitude indicators appropriate to the aircraft being replicated with incremental markings for each 5 degrees of pitch, from 25 degrees pitch up to 25 degrees pitch down, which are appropriate to the attitude indicator being replicated. Left and right bank angles are marked at 10, 20, 30, and 60 degrees of bank respectively.
- All aircraft modules have suction gauges and/or indicators appropriate to the aircraft being replicated that indicate the vacuum pressure for the instruments requiring vacuum.
- All aircraft modules have a flap setting indicator, which displays the current flap setting with appropriate markings as to the aircraft being replicated.
- All aircraft modules have instruments appropriate to the aircraft including navigation radio displays for VOR/ILS frequency in use and radio display(s) for the NDB frequency in use.
- Each navigation radio is equipped with an aural identification feature and all aircraft modules have marker beacon receivers.
- > A transponder that displays the current transponder setting.
- A fuel quantity indicator(s) that displays the fuel remaining, either in analog or digital format, appropriate for the aircraft represented. NOTE: The minimum instrument and equipment requirements specified under 14 CFR part 91, § 91.205 for day visual flights rules (VFR) and instrument flight rules (IFR) a functional during the training session.
- All instrument displays listed are visible during all flight operations, update frequency is at least 45fps and;

## Instruments and Indicators (cont.)

Control inputs are reflected by the flight instruments in real time and without a perceived delay in action. Display updates displays all changes (within the total range of the replicated instrument) that are equal to or greater than the values stated below: Reference Page 5 11/17/14 AC 61-136A Appendix 2

### Note:

LCD High Resolution Monitors are used to display all flight instruments, navigation displays, engine instruments, standby instruments and crew alerting system. Instrument displays listed above are visible during all flight operations.

**Control Requirements.** Physical flight and aircraft system controls are provided as follows:

(a) A self-centering displacement yoke or control stick that allows continuous adjustment of pitch and bank.

(b) Self-centering rudder pedals that allow continuous adjustment of yaw and corresponding reaction in heading and roll.

(c) Throttle or power control(s) that allows continuous movement from idle to full-power settings and corresponding changes in pitch and yaw, as applicable.

(d) Mixture/condition, propeller, and throttle/power control(s) as applicable to the aircraft or family of aircraft represented.

(e) Controls for the following items, as applicable to the category and class of aircraft represented:

- Pitch trim,
- Communication and navigation radios
- Clock or timer,
- Gear handle (if applicable),
- > Transponder
- > Altimeter
- Carburetor heat (if applicable
- Cowl flaps (if applicable)

## Flight Deck and External Sounds / Intercom

A stereo system including subwoofer will be supplied for cockpit sounds, Aural Alerts speakers, and a subwoofer are included. The speakers are strategically located in the simulator to provide a realistic sound environment.

Sound Module Includes (but not limited to):

Engine Landing Gear Flaps/Slats Annunciations Marker Beacons Stall Aural Ground Runway Approach Warnings TCAS GPWS Weather



Typical Speaker System

#### **INTERCOM**

4-Way intercom system included (headsets are not included)



### **Avionics**

The avionics suite includes: Altitude Pre-Selector, Audio Panel, two NAV/COMMS, ADF, DME, transponder, autopilot, marker beacon, PFC 430w and PFC 530w GPS or (optional) Garmin GNS430/GNS530, Garmin G1000 or PFC1000.

**Note:** All GPS devices have integrated NAV/COMMs.

All flight instruments are controlled by rotary encoders located on each side of the main instrument panel or may be controlled with an instrument bezel include: Heading, Altimeter, Course, RMI, ADF, Radar Altimeter, OBS1, OBS2, DG, ADF and RMI.



## **Aircraft Flight & Engine Controls**

- Control Inputs: Precision Flight Controls, Inc. has certified that the transport delay between the control inputs to recognizable system response is less than 300 milliseconds for all input controls (pitch, roll and yaw) of this Qualification Guide. The calculated and tested transport delay is approximately 300 milliseconds or less.
- The AATD has diagnostic software that can be utilized to run a series of tests and will display confirmation that all controls and switches are working properly. Appropriate warning messages are displayed, if any design parameter is out of tolerance.

Yokes, rudder pedals and engine controls are of aircraft quality and representative of a general aviation aircraft.

#### Flight Controls

| Yokes   | Pitch 0-60lbs at full travel from center with3 " fwd and 3" aft for a total of 6"                                                                 |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|         | Roll 0-60lbs at full travel 270° movement from full left to right position.                                                                       |
| Rudders | Yaw 0-65lbs force (each pedal) at full pedal deflection with 1.5" in fwd and 1.5" in aft travel (from center position) for a total travel of 3".  |
|         | Flight Controls, Inc. has certified that the transport delay to recognizable ystem response is less than 300 milliseconds for all control inputs. |

Control inputs are reflected by the flight instruments in real time and without a perceived delay in action. Display updates or actions show all changes (within the total range of the replicated instrument) that are equal to or greater than the following:

#### **Computer System Requirements**



#### Computer Rack Shown With Instructor's Monitor

Precision Flight Controls integrates high performance computer hardware and software components necessary to run the simulator. All computers are installed in a portable computer rack system. The Instructor's Operating Station (IOS) can be located near the aft of the cockpit structure for ease of use.

- High Performance Computer Rack System (multiple computers)
- IOS monitors (touch screen)
- Keyboard and mouse
- KVM Switch Rack System (Keyboard, Video and Mouse control)
- Multimedia PCs with Intel I7 processors
- Compatible operating systems, Windows 7+ and Lennox
- Super VGA monitor supporting 1024x768 resolution or higher in 32 bit color
- DirectX 9.0 API or later
- DirectX 9.0 or later
- > DirectX 9.0 API compatible sound card with speakers or headphones
- Mouse or compatible pointing device
- Ethernet, internal and external network capability
- Windows 7 Professional operating system
- Gigabyte network

Instructor's Operating Station (IOS) permits effective interaction without interrupting the flight in overseeing the pilot's horizontal and vertical flight profiles in real time and space.

- Oversee tracks along airways, holding entries and pattern, and localizer and glide slope alignment/deviation (or other approaches with a horizontal and vertical track).
- > Software checks for proper hardware configuration during system startup.
- Invoke failures in navigation and instruments, radio receivers, landing gear and flaps, engine power (partial and total), and other airplane systems by using either a keyboard or mouse.
- ATC communications or a Line-Oriented Flight Training (LOFT) type training scenario in which the instructor can evaluate pilot performance without having to act as ATC.
- Live ATC communication can be provided via PilotEdge (third party service).
- The instructor's station can pause, freeze or reset the simulation anytime and then reposition the aircraft anywhere in flight or on the ground.

The instructor has the ability to control the simulation at any point using a keyboard and/or mouse. The system is capable of recording both a horizontal and vertical track of aircraft movement for the entire training session for later playback and review.

The instructor can disable any of the instruments prior to or during a training session and simulate failure of any of the instruments without stopping the flight simulation to affect the failure.

The system provides worldwide navigational database. All navigational data is based on procedures as published per 14 CFR part 97.

The instructor can manipulate the following simulation parameters independently of the simulation with the following methods or devices (using mouse, keyboard or touch tablet).

- > Aircraft geographic location: mouse, keyboard or notebook
- > Aircraft heading: mouse, keyboard or touch tablet
- Aircraft airspeed: mouse, keyboard or touch tablet
- > Aircraft altitude: mouse, keyboard or touch tablet

#### Weather:

- Wind direction and speed: mouse/keyboard or touch tablet
- Turbulence: Mouse/keyboard or touch tablet
- Visibility: Mouse/keyboard or touch tablet
- Cloud cover: Mouse/keyboard or touch tablet
- Dry, Wet, Icy Runway: Mouse/keyboard or touch tablet
- Seasonal Changes: Mouse/keyboard or touch tablet
- Wind/Rain/Snow: Mouse/keyboard or touch tablet

The IOS is capable of recording both horizontal and vertical tracks of the aircraft movement. These recordings can be stored and then played back for review using a mouse, keyboard and IOS monitor.

The instructor can manually preset or set failures prior to the beginning of a training session and can simulate failures without stopping or freezing the simulation. Each failure may be set by using the keyboard and mouse via the instructor's station.

#### Failures include (but are not limited to):

- Pitot system
- > Static
- Electrical system
- Generator
- Landing gear failures
- Flap system failures
- Primary and multi-function instrument and map displays

#### Engine failures include (but are not limited to):

- ➢ Engine fire
- Oil pressure
- Oil temperature
- > Oil quantity
- TIT temperature
- Fuel pump / Fuel pressure
- Fuel system failures
- Power loss

#### Instrument failures include (but are not limited to):

- > AI
- > DG
- > VSI
- > ASI
- ≻ тс
- > CD/LOC/GS
- > PFD
- > MFD
- ➢ ECIAS

Avionics failures include (but are not limited to):

- ➢ VHF1, VHF2
- > NAV 1, NAV 2
- > Autopilot/MCP
- > Transponder
- > DME
- > ADF

X-Plane Professional software has navigational databases, obtained and compiled from the NIMA's DAFIF data and/or Jeppesen for the United States, ICAO region K. All navigational data is based on procedures as published in 14 CFR Part 97 and is updated and maintained by Precision Flight Controls. Jeppesen nav data is available via the Jeppesen website and updateable via subscription on a 28 day cycle or as needed.

#### ADDITIONAL FEATURES:

Airport Set Page Prepares the Aircraft for Flight, e.g., Fuel on Board, Weight and Balance, Fluids Quantities, Oxygen Levels, etc. Airport Positioning allows the user to move/slew the aircraft to any location in the air or on the ground.

Approach Page lets the user view the Vertical and Lateral flight path with the ability to pause or freeze the Aircraft's position.

The environment section allows the user to easily change clouds and visibility, time of season and add rain, snow and winds.

Fuel Weight allows the user to easily manage the fuel weight and position.

The Scenarios function allows the user to create, save and recall a flight/training scenario for a later time. For example; the user may want to start the simulation with the aircraft located at Los Angeles International Airport with CAT III conditions on a specific runway or taxiway with improper fuel balance.

The MAP Page is useful for tracking the aircraft in flight and verifying the aircrafts position along a route, also the instructor can use the map for issuing ATC commands.



The moving map page is useful for tracking the aircraft in flight and verifying the aircrafts position along a route, also the instructor can use the map for issuing ATC commands.



The Weather Page allows the user to quickly set up weather condition, e.g. cloud types, wind speed and direction, turbulence, runway conditions and altimeter settings.

| × Reset all              | systems to operational  |                               | System Failures  |                              |             | × |
|--------------------------|-------------------------|-------------------------------|------------------|------------------------------|-------------|---|
| World / MTBF             | Equipment 1 Equipment 2 | Equipment 3 Inst Types        | G430 G1000       | Engines Flying Surfaces      | NAVAIDs     |   |
| vacuur<br>pump #         | always working          | pilot airspeed<br>indicator   | always working 💽 | nav/com-<br>1 radio          | s working   |   |
| vacuur<br>pump #:        | always working 🔹        | pilot artificial<br>horizon   | always working 🔹 | nav/com-<br>2 radio          | s working   |   |
|                          |                         | altimeter                     | always working 🔹 | ADF always                   | s.working   |   |
| pitot-tub<br>#1 blockag  | always working          | pilot turn<br>indicator       | always working   | GPS always                   | s.working   |   |
| pitot-tub<br>#2 blockag  | e always working        | pilot heading<br>indicator    | always working   | DME always                   | s working   |   |
| static-por<br>#1 blockag | t always working 🔹      | pilot vertical<br>velocity    | always working 🔹 | localizer always             | s working 🔹 |   |
| static-por<br>#2 blockag | t always working 🔹      |                               |                  | glideslope always            | s working   |   |
| static-por<br>#1 erro    | t always working 🔹      | copilot airspeed<br>indicator | always working   | transponder                  | s working   |   |
| static-por<br>#2 erro    | t always working 🔹      | copilot<br>artificial horizon | always working 🔹 | beacons always               | s working   |   |
|                          |                         | copilot                       | always working 🔹 |                              |             |   |
| electrica<br>bus #       | always working          | copilot turn<br>indicator     | always working   | hydraulic<br>system #1       | s working   |   |
| electrica<br>bus #       | always working 🔹        | copilot heading<br>indicator  | always working 🔹 | hydraulic<br>system #2       | s working   |   |
| electrica<br>bus #       | always working 🔹        | vertical velocity             | always working 🔹 | hydraulic<br>pump #1         | s working 🔹 |   |
| electrica<br>bus #       | always working 🔹        |                               |                  | hydraulic<br>pump #2         | s working   |   |
|                          |                         | EFIS PFD                      | always working 🔹 | hydraulic<br>leak #1         | s working   |   |
| inverter #               | 1 always working 🗘      | EFIS MFD                      | always working 🔹 | hydraulic<br>leak #2         | s working 🔹 |   |
| inverter #               | 2 always working 🔹      |                               |                  | hydraulic<br>overpressure #1 | s working   |   |
|                          |                         | AOA                           | always working 🔹 | hydraulic<br>overpressure #2 | s working   |   |
| smoke i<br>cockp         | always working 🔹        | stall warn                    | always working 🔹 |                              |             |   |
|                          |                         |                               |                  |                              |             |   |

The Systems Failures Page allows the user to set up system failures on the fly (immediate) or on an event, e.g., set an engine failure at V2

| X Reset all systems to operational   | System                      | Failures |                                          | X |
|--------------------------------------|-----------------------------|----------|------------------------------------------|---|
| World / MTBF Equipment 1 Equipment 2 | Equipment 3 Inst Types G430 | G1000    | Engines Flying Surfaces NAVAIDs          |   |
| bleed air: always working +          | lites: nav always work      | ing 🗧    | ice: all always working 🛊                |   |
| bleed air: always working +          | lites: always work          | ing 🗧    | ice: always working 🔹                    |   |
| bleed-<br>air: APU always working +  | lites: always word          | ing 🗧    | ice: inlet always working 🛊              |   |
|                                      | lites: taxi always.work     | ing 🗧    | ice: inlet always working 🛊              |   |
| depressurization always working +    | lites: always work          | ing 🗧    | ice: prop always working 🛊               |   |
| depressurization always working 🗧    | lites: always work          | ing 🗧    | ice: prop<br>heat 2 always working       |   |
|                                      | floodlight always work      | ing 🗧    | ice: pitot always working +              |   |
| HVAC system always working +         | lites: HUD always work      | ing 🗧    | ice: pitot always working 🔹              |   |
|                                      |                             |          | ice: static always working 🛊             |   |
| gear-warning always working +        |                             |          | ice: static always working 🛊             |   |
|                                      |                             |          | ice: AOA always working +                |   |
|                                      |                             |          | ice: AOA always working 🜩                |   |
|                                      |                             |          | ice: wing always working \$              |   |
|                                      |                             |          | ice: wing always working 🛊               |   |
|                                      |                             |          | ice: engn<br>alt air 1 always working \$ |   |
|                                      |                             |          | ice: engn<br>alt air 2 always working \$ |   |
|                                      |                             |          | ice: always working \$                   |   |
|                                      |                             |          |                                          |   |
|                                      |                             |          |                                          |   |
|                                      |                             |          |                                          |   |

Failures Screen (2 of 9 shown above)

Access to all type of failures such as, landing gear, flaps, icing, alt air, flight controls, engine, navaids, avionics are almost limitless. Multiple failures can be achieved simultaneously as well.

### **Flight Dynamics**

Flight performance and flight dynamics data come from:

- Aircraft Operation Manuals
- > Type Certificate Data Sheets (TCDS)
- Supplemental Type Certificates (STC)
- Aircraft Flight Manuals (AFM)
- Pilot's Operating Handbooks (POH)
- Pilot Input

Note: Aircraft are created from the airplane's Type Certificate Data Sheet (TCDS), pilot operating handbooks (POH), engine and maintenance manuals and Pilots experience.

The flight dynamics and performance parameters are comparable to the aircraft being replicated. The vertical lift component changes as a function of bank comparable to the aircraft being replicated. Changes of flap settings and changes of retractable gear cause changes in flight dynamics comparable to the aircraft being replicated. The presence and intensity of wind and turbulence are reflected in the handling and performance qualities of the aircraft module and are comparable to the aircraft being replicated.

AIR files are used to provide flight dynamics data, in the form of coefficients and data tables that determine the flying qualities of the aircraft.

## **Statement of Compliance**

The following statement of compliance certifies the requirements for an AATD have been met as demonstrated in accordance with the guidelines published in AC-61-136A.

The Modular Flight Deck has an ergonomic cockpit design with full scale hardware components designed for basic and advanced flight training.

Modular Flight Deck incorporates simulated or actual aircraft hardware with advanced avionics and systems that meets or exceeds all requirements of AC-61-136A.

Instruments, equipment, panels, systems and controls installed in the AATD are of sufficient realism (visually, spatially and tactile) to allow for procedures training on all systems identified below. Actuation of installed switches and controls replicate those installed in general aviation aircraft

The cockpit structure is enclosed and sufficient lighting is provided on all panels to permit all training tasks to be accomplished in both day and night simulated environments.

The software simulates a <u>6 degrees of freedom aerodynamic flight models</u> with validated data that ensures faithful replication of this class of aircraft in all phases of flight to include effects of thrust and drag, realistic effects of pressure and temperature changes in gross weight and center of gravity throughout the normal flight envelope. Source date for flight models are acquired by using:

- Aircraft Operation Manuals
- > Type Certificate Data Sheets (TCDS)
- Supplemental Type Certificates (STC)
- Aircraft Flight Manuals (AFM)
- Pilot's Operating Handbooks (POH)
- Pilot Input

The digital computational system has sufficient accuracy, resolution, spare capacity and dynamic response to simulate the class of aircraft to FAA ATD standards and testing requirements.

Instrument response is completely automatic based on systems simulation of control inputs.

Navigation and communication equipment installed in the system, match the form, fit and function and operate within tolerances of those installed in the class of aircraft being simulated.

The systems provide a sufficiently accurate training environment representing aircraft equipment for procedures training, in accordance with the relevant FARs, in normal, abnormal and emergency conditions.

## Statement of Compliance (cont.)

Seat(s) are provided for the instructor/check airman and FAA inspector. The seats are moveable which facilitate adequate viewing of the cockpit panels and visual displays.

The Instructor's Operating Station (IOS) comprises one or two LCD displays, keyboard and mouse that will allow the instructor to position and configure the simulated aircraft for normal, abnormal and emergency conditions.

A five channels visual system is provided via 1080p high resolution LED monitors. The displays used for the forward and side views represent at least a 30° vertical field of view and 225° horizontal field of view.

## **Cockpit Features**

The Modular Flight Deck is based on the dimensional layout of a typical general aviation cockpit. The Modular Flight Deck closely represents the overall functionality, performance and instrumentation of general aviation aircraft. The platform consists of a cockpit section, instructor's station, visual display system and an audio system. It incorporates a combination of hardware and software components that is assembled and checked by Precision Flight Controls Inc. All hardware elements are permanently installed and designed so the cockpit has the appearance and feel of the actual aircraft. From the pilot's seated position, there are no computer hardware elements such as keyboards, pointing devices, etc. for his or her use.

The Modular Flight Deck provides a realistic scaled cockpit design. This simulator provides an effective training environment for student and certificated pilots. This includes the capability of practicing scenario based flight training events, simulated equipment failures, normal and emergency procedures, pilot evaluations, instrument procedures/experience while facilitating increased pilot overall proficiency.

The cockpit controls, switches, knobs and switch panels are replicas and located in the proper position and distance from the pilot's seated position are representative of the class of aircraft.

## **Cockpit Instrument Response**

The basic iteration rate for simulator programs is 32Hz, yielding a frame time of 1/32= 31.25 ms or better.

The sequence of events for a control input, in any axis is as follows:

- Mechanical input
- Analog to digital conversion (if required)
- Communication to controls position
- Aerodynamic computation
- Instrument scaling

## **Training Device Components List**

| 1 | Cockpit Enclosure                     | PFC    | MFD            | Ver 1 or | Steel and Aluminum      |
|---|---------------------------------------|--------|----------------|----------|-------------------------|
|   |                                       |        |                | Higher   | construction            |
| 2 | Control Yoke(s)                       | PFC    | Beech, Mooney, | Ver 1 or | Cast aluminum control   |
|   |                                       |        | Cessna, Saab   | Higher   | yokes, elevator, A/P    |
|   |                                       |        | and            |          | disconnect, CWS, push   |
|   |                                       |        | Boeing         |          | to talk                 |
| 3 | Rudder pedals with toe brakes         | PFC    | PFC PRO        | Ver 1 or | Cast Aluminum/Steel     |
|   |                                       |        |                | Higher   | construction            |
|   |                                       |        |                |          | hydraulic dampening     |
|   |                                       |        |                |          | or dynamic control      |
|   |                                       |        |                |          | loading                 |
| 4 | Avionics Suite: Alt Pre-Select, Audio | PFC    | DAVI-ENH       | Ver 1 or | Simulated digital       |
|   | Panel, Marker Beacon, Dual            |        |                | Higher   | avionics                |
|   | Com/Nav, DME, Transponder, ADF        |        |                |          | (Similar to King Silver |
|   | and Autopilot                         |        |                |          | Crown)                  |
| 5 | GPSW 530 or 430 or both               | PFC    | PFC            | Ver 1 or | Real or simulated       |
|   |                                       |        | 430W/530W      | Higher   | Garmin GNS              |
|   |                                       |        | or Garmin's    |          | 430/530W                |
|   |                                       |        | GNS            |          | PFC 430, PFC 530        |
|   |                                       |        | 430W/530w      |          |                         |
| 6 | PFC 1000 Suite                        | PFC    | PFC 1000       | Ver 1 or | PFC1000 MFD/PFD         |
|   | (Retrofit Panels)                     |        | 1040 and or    | Higher   | and audio panels        |
|   |                                       |        | 1044 PFD and   |          |                         |
|   |                                       |        | MFD with 1347  |          |                         |
|   |                                       |        | Audio Panel    |          |                         |
| 7 | Garmin G1000 Suite                    | Garmin | Garmin 1040    | N/A      | OEM Garmin G1000        |
|   |                                       |        | and or 1044    |          | panels                  |
|   |                                       |        | PFD and MFD    |          |                         |
|   |                                       |        | with 1347      |          |                         |
|   |                                       |        | Audio Panel    |          |                         |
| 8 | PFC Instrument Bezels                 | PFC    | PFC BZL SEL    | Ver 1 or | Instrument panel        |
|   |                                       |        | PFC BZL MEL    | Higher   | overlay with encoder    |
|   |                                       |        | PFC BZL Turbo  |          | control for most        |
|   |                                       |        | PFC BZL JET    |          | instruments             |
|   |                                       |        |                |          |                         |
| 9 | TO/GA switches                        | PFC    | N/A            | N/A      | Panel or throttle       |
| - | -,                                    |        | ,              |          | quadrant mounted        |

| <b>Item</b> | Component | <b>Manufacturer</b> | Model | <b>Version</b> | <b>Details</b> |
|-------------|-----------|---------------------|-------|----------------|----------------|

| 10 | Panels/Switches<br>master start panels, magneto<br>switches, battery switches, alternator<br>switches, parking brake. landing gear<br>panel, flaps panel, horn silence,<br>pressurization controls, circuit<br>breaker panel, pitot, heat, anti-Ice,<br>nav light, strobe light, landing light,<br>taxi light, aileron trim, elevator trim,<br>rudder trim, cowl flaps levers, carb<br>heat, fuel boost pump switches, fuel<br>tank selectors, emergency landing | PFC             | N/A                             | N/A                | Ancillary panels<br>provide fully<br>functional system(s)<br>interfacing |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------|--------------------|--------------------------------------------------------------------------|
| 11 | gear extension<br>Instrument Controls, RMI, OBS,<br>HDG,CRS,ALT,BARO, A/S,DG and<br>Radar Altimeter                                                                                                                                                                                                                                                                                                                                                              | PFC             | RIC 8                           | Ver 1 or<br>Higher | 8 Digital Encoders                                                       |
| 12 | Digital Clock/Stopwatch                                                                                                                                                                                                                                                                                                                                                                                                                                          | Davtron         | MA77 or<br>MA800                | N/A                | Digital Clock/Timer                                                      |
|    | Pilots, Co-Pilots Instrument Panels                                                                                                                                                                                                                                                                                                                                                                                                                              | PFC             | PFCIP                           | N/A                | Hi-Resolution<br>instrument LED panels                                   |
| 13 | Throttle quadrants, vernier or lever type                                                                                                                                                                                                                                                                                                                                                                                                                        | PFC             | PFCTQ                           | Ver 1 or<br>Higher | Fiber Reinforced ABS<br>with Die Stamped<br>Levers                       |
| 14 | 3 DOF Motion Base<br>not an AATD requirement(optional)                                                                                                                                                                                                                                                                                                                                                                                                           | D-BOX           | PFC 3DOF                        | Ver 1 or<br>Higher | 3 DOF motion                                                             |
| 15 | 6 DOF Motion Base<br>not an AATD requirement(optional)                                                                                                                                                                                                                                                                                                                                                                                                           | PFC             | PFC 6 DOF                       | Ver 1 or<br>Higher | 6 DOF motion                                                             |
| 16 | Visual System (external)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 40" LCD         | Visio, Samsung<br>or equivalent | N/A                | One to five 40" LCD<br>1080p monitors                                    |
| 17 | Seating (Pilot and Co-Pilots) w<br>armrest                                                                                                                                                                                                                                                                                                                                                                                                                       | PFC             | FCS-ADJBASE-<br>TRCKS           | N/A                | Full adjustable, tilt,<br>fwd, aft and vertical<br>movement              |
| 18 | Overhead light panel                                                                                                                                                                                                                                                                                                                                                                                                                                             | Map lights Inc. | N/A                             | N/A                | Dual articulating LED<br>lights<br>on/off controls                       |
| 19 | Post lamp panel lighting                                                                                                                                                                                                                                                                                                                                                                                                                                         | PFC             | PFC                             | N/A                | Adjustable LED                                                           |
| 20 | 4 way intercom                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PFC             | N/A                             | N/A                | Pilot, Co-Pilot,<br>instructor and<br>observer inputs                    |

| 21 | Speaker system(s)                   | PFC      | PFC          | N/A            | Cockpit sounds,        |
|----|-------------------------------------|----------|--------------|----------------|------------------------|
|    | internal sounds and external sounds |          |              | ,              | ATC, ATIS, MKR         |
|    |                                     |          |              |                | beacon, morse code     |
|    |                                     |          |              |                | external Sounds,       |
|    |                                     |          |              |                | engine, flaps, landing |
|    |                                     |          |              |                | fear, runway, braking, |
|    |                                     |          |              |                | skidding               |
| 22 | Instructor's station                | Laminar  | X-Plane      | Version 8.0 or | 24"-30" LCD            |
|    |                                     | Research | Professional | Higher         | Mouse and Keyboard     |
|    |                                     |          |              |                | or Touchpad            |
| 23 | Navdata (worldwide)                 | Jeppesen |              | N/A            | Can Be Updated On a    |
|    |                                     |          |              |                | 28 Day Cycle           |
| 24 | Core simulation software            | Laminar  | X-Plane      | Version 8.0 or | Visual and             |
|    |                                     | Research | Professional | Higher         | Navigational Database  |
| 25 | Computers (2), or as required       | PFC      | PFC          | Intel I7       | Custom High            |
|    |                                     |          |              | Solid State    | Performance            |
| 26 | Instrument Procedures Data Base     | DAFIF or |              | N/A            | Provides for FAA       |
|    |                                     | Jeppesen |              |                | published instrument   |
|    |                                     |          |              |                | navigation procedures, |
|    |                                     |          |              |                | data base per 14 CFR   |
|    |                                     |          |              |                | 97 (en-route and       |
|    |                                     |          |              |                | approach)              |
| 27 | Hobbs Meter                         | DACTON   | Mini         | 102033         | Hour Meter             |



Example of Bezeled Instrument Panel (JET)



Center Console, Circuit Breaker Panel, and Flaps Panel



Lights Panel



Flaps and Pressurization Panel



Fuel Pump/Landing Gear Panel



**Single Engine** 

Multi-Engine



Turboprop



Interchangeable Master Start Panels



Intercom and Parking Brake Panel

| 0 | AVIONICS<br>MASTER | COM1          | GPS<br>NAV 1 | XPNDR             | GPS<br>NAV 2   | COM 2          | AUTO           | AP<br>SERVOS | STALL         | 3 | INSTRU | JCTOR<br>PAUSE |
|---|--------------------|---------------|--------------|-------------------|----------------|----------------|----------------|--------------|---------------|---|--------|----------------|
|   | 2                  | 5             | 5            | 5                 | 5              | 5,             | 5              | 5            | 5             |   | MIC    |                |
|   | FLAPS<br>POS IND   | FLAPS         | LDG<br>GEAR  | LDG GR<br>POS LTS | FUEL<br>PUMP L | FUEL<br>PUMP R | PROP<br>DE-ICE |              | PITOT<br>HEAT |   | O      | FREEZE         |
|   | 3                  | 15            | 30           | 15                | 5              | 5              | 5              | 5            | 5             |   |        |                |
|   | NAV<br>LTS         | STROBE<br>LTS | TAXI<br>LTS  | LDG<br>LTS        | PANEL<br>LTS   | ALT 1          | ALT 2          | BAT1         | BAT2          |   | PHONE  | RESET          |
|   | 5                  | 5             | 10           | 10                | 15             | 15             | 15             | 20           | 20            |   |        | . w            |

Circuit Breaker and IOS Panel

(Circuit Breakers can be manually pulled or controlled by the Instructors Station for failing components or systems)



Cessna 208 Master Panel and Circuit Breaker Panel (Optional)



G1000 Retrofit Bezels (optional)



Quest Kodiak / G1000





Dynamic Control Loading Yoke(s)

**Enhanced Yoke Features** 



Control Loading Rudder Pedals



Hydraulic Dampened Rudder Pedals



Turboprop Instrument Bezel



Technically Advanced Instrument Bezel



Single Engine Instrument Panel



Interchangeable Throttle Quadrants (not all combinations shown)



Interchangeable Throttle Quadrants (not all combinations shown)



Ergonomic Pilots Seats with adjustable arm rests, tilt and vertical adjustment. The seats are attached to seat tracks for easy movement forward and aft and also allows for entrance and egress of the simulator.



Center Flight Console with Elevator, Aileron and Rudder Trim Controls Post Lamps, Cowl Flaps, Interchangeable Fuel Tank Selector and Emergency Gear Extension Switch
## Training Device Components List (cont.)



Modular Flight Deck Cockpit Show with (optional) ProMotion 3 DOF Motion Base

#### The MFD meets the following Control Input requirements:

Physical flight and aircraft control systems are designed such that they are recognizable as to their function and how they are manipulated solely from their appearance. No keyboard, mouse, or gaming joystick is used to control the aircraft.

Virtual controls are limited to setting the aircraft configuration, location, weather conditions, and pausing action.

No keyboard or mouse is used to set or position any of the listed features of this device. The required and additional equipment is operated in the same manner in which it would be operated in the aircraft represented.

The physical arrangement, appearance, and operation of controls, instruments, and switches closely represent the model of aircraft.

Only the software package evaluated and approved by the FAA is available for use on this computer system.

(1) A realistic shrouded (enclosed) cockpit design and instrument panel arrangement representing a specific model aircraft cockpit.

(2) Cockpit knobs, system controls, switches, and/or switch panels in realistic sizes and design appropriate to each intended functions, in the proper position and distance from the pilot's seated position, and representative of the category and class of aircraft being represented.

(3) Primary flight and navigation instruments appropriately sized and properly arranged that exhibit neither stepping nor excessive transport delay.

(4) Digital avionics panels.

(5) Global Positioning System (GPS) navigator with moving map display.

(6) Three-axis autopilot and flight director (FD).

(7) Pitch trim (manual or electric pitch trim) permitting indicator movement either electrically or analog in an acceptable trim ratio.

(8) An integrated visual system provides realistic cues in both day and night visual flight rules (VFR) and instrument flight rules (IFR) meteorological conditions to enhance a pilot's visual orientation in the vicinity of an airport including:

• Adjustable visibility parameters; and adjustable ceiling parameters.

(9) A pilot seat(s) appropriate to the aircraft configuration.

(10) Rudder pedals secured to the cockpit floor structure, or that can be physically secured to the floor beneath the device in proper relation to cockpit orientation.

(11) Push-to-talk switch on the control yoke.

(12) A separate instructor station to permit effective interaction without interrupting the flight in overseeing the pilot's horizontal and vertical flight profiles in real time and space. This must include the ability to:

(a) Oversee tracks along airways, holding entries and patterns, and Localizer (LOC) and glideslope (GS) alignment/deviation (or other approaches with a horizontal and vertical track).

(b) Function as air traffic control (ATC) in providing vectors, etc., change in weather conditions, ceilings, visibilities, wind speed and direction, light/moderate/severe turbulence, and icing conditions.

(c) Invoke failures in navigation and instruments, radio receivers, landing gear and flaps, engine power (partial and total), and other aircraft systems (pitot, electric, static, etc.) by using either a keyboard or mouse.

(13) Capable of simulating all of the emergency procedures for which a checklist is prescribed in the aircraft pilot's operating handbook (POH) or flight manual.

#### Note:

LCD High Resolution Monitors are used to display all flight instruments, navigation displays, engine instruments, standby instruments and crew alerting system. Instrument displays listed above are visible during all flight operations.

(1) Instruments and indicators replicated and properly located as appropriate to the aircraft represented:

(a) Flight instruments for analog in a standard configuration which represent traditional "round" flight instruments or electronic primary flight displays (PFD) and multi-function displays with reversionary and backup flight instruments.

(b) A sensitive altimeter with incremental markings each 20 feet or less, operable throughout the normal operating range of the aircraft or family of aircraft represented.

(c) A magnetic direction indicator.

(d) A heading indicator with incremental markings each 5 degrees or less, displayed on a 360 degree circle. Arc segments of less than 360 degrees may be selectively displayed if desired or

required, as applicable to the aircraft or family of aircraft represented.

(e) An airspeed indicator with incremental markings as shown on the aircraft or family of aircraft represented; airspeed markings of less than 40 knots may not be displayed.

(f) A vertical speed indicator with incremental markings each 100 fpm for both climb and descent, for the first 1,000 feet per minute (fpm) of climb and descent, and at each 500 fpm climb and descent for the remainder of a minimum  $\pm 2,000$  fpm total display, or as applicable to the aircraft or family of aircraft being represented.

(g) A gyroscopic rate-of-turn indicator or equivalent with appropriate markings for a rate of 3 degrees per second turn for left and right turns. If a turn and bank indicator is used, the 3 degrees per second rate index must be inside of the maximum deflection of the indicator.

(h) A slip and skid indicator with coordination information displayed in the conventional skid ball format where a coordinated flight condition is indicated with the ball in the center position.

(i) An attitude indicator with incremental markings each 5 degrees of pitch or less, from 20 degree pitch up to 40 degree pitch down or as applicable to the aircraft or family of aircraft represented. Bank angles are identified at "wings level" and at 10, 20, 30, and 60 degrees of bank (with an optional additional identification at 45 degrees) in left and right banks.

(j) Engine instruments as applicable to the aircraft or family of aircraft being represented, providing markings for normal ranges and minimum and maximum limits.

(k) A suction gauge or instrument pressure gauge with a display applicable to the aircraft represented.

(I) A flap setting indicator that displays the current flap setting. Setting indications are typical of that found in an actual aircraft.

(m) A pitch trim indicator with a display that shows zero trim and appropriate indices of airplane nose down and airplane nose up trim, as would be found in an aircraft.

(n) Communication radio(s) with display(s) of the radio frequency in use.

(o) Navigation radio(s) capable of replicating both precision and nonprecision instruments, including approach procedures (each with an aural identification feature), and a marker beacon receiver. An instrument landing system (ILS), non-directional radio beacon (NDB), Global Positioning System (GPS), Localizer (LOC) or Very high frequency Omnidirectional Range (VOR). Graduated markings as indicated below must be present on each course deviation indicator (CDI) as applicable. The markings include:

• One-half dot or less for course/glideslope (GS) deviation (i.e., VOR, LOC, or ILS), and

• Five degrees or less for bearing deviation for automatic direction finder (ADF) and radio magnetic indicator (RMI), as applicable.

(**p**) A clock with incremental markings for each minute and second, or a timer with a display of minutes and seconds.

(q) A transponder that displays the current transponder setting.

(r) A fuel quantity indicator(s) that displays the fuel remaining, either in analog or digital format, appropriate for the aircraft or family of aircraft represented.

# NOTE: The minimum instrument and equipment requirements specified under 14 CFR part 91, § 91.205 for day visual flights rules (VFR) and instrument flight rules (IFR) are functional during the training session.

(2) All instrument displays listed above must be visible during all flight operations. Allowances can be made for multifunction electronic displays that may not display all instruments simultaneously. The update rate of all displays must provide an image of the instrument that:

- (b) Does not appear to be out of focus or illegible.
- (b) Does not appear to "jump" or "step" to a distracting degree during operation.
- (c) Does not appear with distracting jagged lines or edges.
- (d) Does not appear to lag relative to the action and use of the flight controls.

(3) Control inputs are reflected by the flight instruments in real time and without a perceived delay in action. Display updates display all changes (within the total range of the replicated instrument) that are equal to or greater than the values stated below:

- (a) Airspeed indicator: change of 5 knots.
- (b) Attitude indicator: change of 2 degrees in pitch and bank.
- (c) Altimeter: change of 10 feet.
- (d) Turn and bank: change of ¼ standard rate turn.
- (e) Heading indicator: change of 2 degrees.
- (f) Vertical speed indicator (VSI): change of 100 fpm.
- (g) Tachometer: change of 25 rpm or 2 percent of turbine speed.
- (h) VOR/ILS: change of 1 degree for VOR or ¼ of 1 degree for ILS.
- (i) ADF: change of 2 degrees.

(j) GPS: change as appropriate for the model of GPS based navigator represented.

(k) Clock or timer: change of 1 second.

(4) Displays reflect dynamic behavior of an actual aircraft display (e.g., a VSI reading of 500 fpm reflect a corresponding movement in altimeter and an increase in power reflects an increase in the rpm indication or power indicator.)

**Flight instruments panels include** (as per aircraft requirements): airspeed indicator, altimeter, radar altimeter, magnetic compass, OBS 1, OBS 2, ADF, DME, RMI, directional gyro, vertical speed indicator, vacuum, outside air temp, fuel tank gauge(s), alternator amps, bus amps, battery, flaps position indicator, cowl flaps position indicators, flight management annunciator and altitude pre-select.

**Engine instruments** (as per aircraft requirements): manifold pressure gauge(s), RPM gauge(s), fuel flow gauge(s), CHT, EGT, oil temp, oil pressure, ITT, TIT, and propeller sync.

- All aircraft modules have an adjustable altimeter that operates throughout the normal operating range of the aircraft being replicated.
- All aircraft modules have a heading indicator with incremental markings of 5 degrees and display on a 360 degree circle.
- All aircraft modules have an airspeed indicator with incremental markings appropriate to the aircraft being replicated.
- All aircraft modules have vertical speed indicators with markings appropriate to the aircraft being replicated.
- All aircraft modules have a turn-and-bank indicator with incremental markings of 3 degrees per second turn for left and right turns and the 3 degree index is inside the maximum deflection of the indicator.
- All aircraft modules have a skid and slip indicator with coordination information displayed in the conventional skid ball format with markings for the center position.
- All aircraft modules have attitude indicators appropriate to the aircraft being replicated with incremental markings for each 5 degrees of pitch, from 25 degrees pitch up to 25 degrees pitch down, which are appropriate to the attitude indicator being replicated.

- > Left and right bank angles are marked at 10, 20, 30, and 60 degrees of bank respectively.
- All aircraft modules have suction gauges and/or indicators appropriate to the aircraft being replicated that indicate the vacuum pressure for the instruments requiring vacuum.
- All aircraft modules have a flap setting indicator, which displays the current flap setting with appropriate markings as to the aircraft being replicated.
- All aircraft modules have instruments appropriate to the aircraft including navigation radio displays for VOR/ILS frequency in use and radio display(s) for the NDB frequency in use.
- Each navigation radio is equipped with an aural identification feature and all aircraft modules have marker beacon receivers.
- > A transponder that displays the current transponder setting.
- A fuel quantity indicator(s) that displays the fuel remaining, either in analog or digital format, appropriate for the aircraft represented. NOTE: The minimum instrument and equipment requirements specified under 14 CFR part 91, § 91.205 for day visual flights rules (VFR) and instrument flight rules (IFR) a functional during the training session.
- All instrument displays listed are visible during all flight operations, update frequency is at least 45fps and;

Control inputs are reflected by the flight instruments in real time and without a perceived delay in action. Display updates displays all changes (within the total range of the replicated instrument) that are equal to or greater than the values stated below: Reference Page 5 11/17/14 AC 61-136A Appendix 2

#### **Control Requirements**

Physical flight and aircraft system controls are provided as follows:

(a) A self-centering displacement yoke or control stick that allows continuous adjustment of pitch and bank.

(b) Self-centering rudder pedals that allow continuous adjustment of yaw and corresponding reaction in heading and roll.

(c) Throttle or power control(s) that allows continuous movement from idle to full-power settings and corresponding changes in pitch and yaw, as applicable.

(d) Mixture/condition, propeller, and throttle/power control(s) as applicable to the aircraft or family of aircraft represented.

(e) Controls for the following items, as applicable to the category and class of aircraft represented:

- > Pitch trim,
- Communication and navigation radios
- Clock or timer,
- Gear handle (if applicable),
- > Transponder
- > Altimeter
- Carburetor heat (if applicable
- Cowl flaps (if applicable)

#### **Aircraft Configurations**

The Modular Flight Deck is configured as a generic general aviation category cockpit. The Modular Flight Deck is capable of flying SEL, MEL, Turboprop, Jet and technically advanced aircraft by simply re-configuring components and software in the cockpit, e.g. instrument panels, throttle quadrants, master start panels and software.

#### **Aircraft Instrument Panels**



**Beechcraft Bonanza** 



#### **Beechcraft Baron**



#### **Beechcraft Travel Air**



#### **Beechcraft Duchess**



Cessna 152



Cessna 172 (typical)



Cessna 182(typical)



#### Cessna 206



Cessna 208 Caravan



#### Cessna 414



Cessna 421



#### **Diamond DA20**



Mooney



#### Piper Cheyenne



#### **Piper Archer**



#### **Piper Arrow**



#### **Piper Warrior**



#### Piper Malibu/Meridian



Piper Seminole



#### Piper Seneca V



#### Piper Chieftain



#### Piper Seneca I and III



#### PC-12 Pilatus



#### Beechcraft C90



Beechcraft A100



#### Beechcraft B200



Beechcraft 1900C



Cessna 501/550







| NAV2 108.00 117.95                                                                                                                       | <u>gs Økt</u> dtk ,            | AUX - TRIP P                                           |                                                                         | ETE;                                          | 136.975 ↔<br>136.975                                                     | <b>118.000</b> сом1<br>118.000 сом2 |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------|-------------------------------------|
| TRQ<br>FT-LB 880<br>ITT 700<br>KLWC                                                                                                      | T DATA                         | FPL 00 AV DEP TIME GS FUEL FLC FUEL ONE                | LEG RE<br>→ DSC                                                         |                                               | AUTOMATIC<br>CALIBRATED AS<br>IND ALTITUDE<br>PRESSURE<br>TOTAL AIR TEMP | 0кт<br>-1ғт<br>29.92тм<br>15°с      |
| OIL PSI 98<br>OIL °C 777<br>AMPS 55<br>OIL °C 777<br>AMPS 55<br>FLAPS 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ETE EEA 22:4<br>ESA<br>SUNRISE | ° EFF<br>0.0NM TOT<br>00:00 REM<br>11LCL REM<br>FT FUE | JEL STATS,<br>ICIENCY<br>AL ENDUR<br>FUEL<br>ENDUR<br>L REQ<br>AL RANGE | 10.0<br>00:00<br>06L<br>00:00<br>0.06L<br>0NM | OTHER STATS<br>DENSITY ALT<br>TRUE AIRSPEED                              | FT<br>ØKT                           |





#### Weight and Balance Charts

CG References / Limitations come from several sources including but not limited to: Manufactures POH, STC and AFMs



#### Weight and Balance Charts (cont.)

Hawker Beechcraft Corporation Model G58 Section 6 Wt and Bal/Equip List



WEIGHT AND BALANCE DIAGRAM

December, 2009

**BEECHCRAFT Baron B55** 

6-13

Wt and Bal/Equip List



64

#### Weight and Balance Charts(cont.)

#### Wt & Bal/Equip List

#### BEECHCRAFT Duchess 76



#### MOMENT LIMITS VS WEIGHT

WEIGHT CONDITIONFWD C. G. LIMITAFT C. G. LIMIT3900 POUNDS (MAX. TAKE-OFF/LANDING)110.6117.53250 POUNDS OR LESS106.6117.5

#### **Beechcraft Duchess**

#### Weight and Balance Charts(cont.)



WEIGHT IN POUNDS



**Beechcraft Travel Air** 

Wt & Bal/Equip List



Beechcraft B200

#### Weight and Balance Charts(cont.)



## Beechcraft. KING AIR A100 WEIGHT & CENTER OF GRAVITY DIAGRAM

**Beechcraft A100** 

Wt & Bal/Equip List



WEIGHT AND BALANCE DIAGRAM

Beechcraft C90

## Raytheon Aircraft

1900D Airliner Section II - Limitations

#### CENTER OF GRAVITY LIMITS

#### AFT LIMIT

| Takeoff, Climb Approach, and Landing | 299.9 inches (761.8 centimeters) aft of datum at all weights.                      | 1 |
|--------------------------------------|------------------------------------------------------------------------------------|---|
| Cruise and Descent                   | 303.0 inches (769.6 centimeters) aft of datum from 17,120 pounds to 12,313 pounds. |   |
|                                      | 299.9 inches (761.8 centimeters) aft of datum for 12,312 pounds and below.         |   |

#### FORWARD LIMITS

283.0 inches (718.8 centimeters) aft of datum at 17,120 pounds (7765 kilograms), with straight line variation to 274.5 inches (697.2 centimeters) aft of datum at 11,600 pounds (5262 kilograms).

#### DATUM

The reference datum is located 83.5 inches (212.1 centimeters) forward of the center of the front jack point.

#### Beechcraft 1900

#### Weight and Balance Charts (cont.)



CESSNA MODEL 172R



Cessna 172
# Weight and Balance Charts (cont.)



Cessna 182



Cessna 182T

CESSNA MODEL 208B G1000 WEIGHT & BA

SECTION 6 WEIGHT & BALANCE/EQUIPMENT LIST

# **CENTER OF GRAVITY LIMITS**

A72476



### WARNING

It is the responsibility of the pilot to make sure that the airplane is loaded correctly. Operation outside of prescribed weight and balance limitations could result in an accident and serious or fatal injury.

Cessna 208



3-6

3-7

SECTION 6 WEIGHT & BALANCE



WEIGHT AND MOMENT TABLES





Figure 6-2 (Sheet 2 of 2)

Cessna 421

# Weight and Balance Charts (cont.)



#### Cessna 414

| Aircraft (i.e., N123             | 45)    | Weight<br>(Lbs.) | Arm<br>(In.) | Moment<br>(In-lbs.) | TCDS No.                       | A22CE             |
|----------------------------------|--------|------------------|--------------|---------------------|--------------------------------|-------------------|
| Basic Empty Weight - Weighing D  | ue     |                  |              |                     | Typical Empty We               | ight: 7084 Lbs.   |
| Pilot-in-Command                 |        |                  | 131.0        | $\sim$              | 1                              |                   |
| Second-in-Command                | 0 10   | -                | 131.0        |                     | NITT                           |                   |
| Seat #3 Occupant                 |        |                  | 207.0        |                     |                                |                   |
| Seat #4 Occupant                 |        |                  | 207.0        | $\sim$              | Approximate Fuel D             | ensities @ 15° C  |
| Seat #5 Occupant                 |        |                  | 241.0        |                     | Jet A / A-1                    | 6.75 PPG          |
| Seat #6 Occupant                 |        |                  | 241.0        |                     | JET B / JP-4                   | 6.5 PPG           |
| Seat #7 Occupant                 |        |                  | 167.0        |                     | JP-5                           | 6.8 PPG           |
| Seat #8 Occupant                 |        |                  | 167.0        |                     | JP-8                           | 6.7 PPG           |
| Nose Baggage Compt 350 Lbs Ma    | ax     |                  | 74.0         |                     | AVGAS 100LL                    | 6 PPG             |
| Aft Cabin Baggage Compt 650 Ll   | bs Max |                  | 286.3        |                     | AVGAS 100 / 80                 | 5.8 PPG           |
| Zero-Fuel Weight - 8400 Lbs Max  |        |                  |              |                     |                                |                   |
| FUEL TANKS (Ramp)                | Gals   |                  | 256.0        |                     | Max. Useable Fuel:             | 564 Gallons       |
| Ramp Gross Weight - 12,000 Lbs   | Max    |                  |              |                     |                                |                   |
| FUEL TANKS (Takeoff)             | Gals   |                  | 256.0        | $\cap$              | Fuel to Taxi: 209 LU           | s. every 10 Mins. |
| Takeoff Gross Weight - 11,850 Lb | s Max  | nr               |              |                     | MITT                           |                   |
| FUEL TANKS (Landing)             | Gals   |                  | 2560         |                     | Fuel used, Takeoff to Landing: |                   |
| Landing Gross Weight - 11,350 Ll | bs Max |                  |              |                     |                                |                   |

#### Cessna CE-500/501 (Cessna Citation I) - Weight and Balance (Serial Numbers 500-0303 to 500-0689 (and 500-0001 to 500-0302 with Cessna Service Bulletin upgrades )

CE-500/501 - Center of Gravity Limits vs. Gross Weight

[ C.G. Range (Gear Extended): 11,850 Lbs: +250.0 to +255.9 / 7,500 Lbs or less: +246.4 to +255.9 ] (Straight line variation between points given).



#### **Cessna Citation 501**

MODEL 550

# CENTER-OF-GRAVITY MOMENT ENVELOPE



**Cessna Citation 550** 





The flight CG position must be within the following limits:

Most forward flight CG:

2.35 m (92.52 in) aft of Datum Plane at 1250 kg (2756 lb)
2.35 m (92.52 in) aft of Datum Plane at 1468 kg (3236 lb)
2.40 m (94.49 in) aft of Datum Plane at max. take off mass (see Section 2.7) linear variation in between

Most rearward flight CG:

2.42 m (95.28 in) aft of Datum Plane at 1250 kg (2756 lb)
2.49 m (98.03 in) aft of Datum Plane at 1600 kg (3527 lb)
2.49 m (98.03 in) aft of Datum Plane at max. take off mass (see Section 2.7) linear variation in between

**Diamond DA42** 

# Weight and Balance Charts (cont.)

Center of Gravity Charts and References (cont.)



**Diamond DA40** 

MOONEY M20M

#### SECTION VI WEIGHT AND BALANCE



M20M - CENTER OF GRAVITY MOMENT ENVELOPE

Mooney

MOONEY M20M

#### WEIGHT AND BALANCE



#### M20M - CENTER OF GRAVITY LIMITS ENVELOPE

Mooney M20M



Mooney M20J

MOONEY Encore

#### WEIGHT AND BALANCE



#### M20M - CENTER OF GRAVITY LIMITS ENVELOPE

**Mooney Encore** 

#### MOONEY

#### WEIGHT AND BALANCE



M20TN - CENTER OF GRAVITY LIMITS ENVELOPE

Mooney 231





C.G. RANGE AND WEIGH

**Piper Seminole** 

PA-46-350P, MIRAGE



**Piper Mirage** 

#### WEIGHT AND BALANCE

#### PIPER AIRCRAFT CORPORATION PA-28-161, CHEROKEE WARRIOR II



**Piper Warrior** 

PIPER AIRCRAFT CORPORATION PA-28R-201, CHEROKEE ARROW III

WEIGHT AND BALANCE



**Piper Arrow III** 

91



**Piper Arrow IV** 

#### SECTION 6 WEIGHT AND BALANCE PIPER AIRCRAFT CORPORATION PA-28-181, ARCHER II



C.G. RANGE AND WEIGHT Figure 6-15

REPORT: VB-1120 6-12 ISSUED: JULY 2, 1979 REVISED: MAY 29, 1980

**Piper Archer** 

## WEIGHT AND BALANCE

## PIPER AIRCRAFT CORPORATION PA-31T, CHEVENNE





# **Piper Cheyenne**

WEIGHT AND BALANCE

# PIPER AIRCRAFT CORPORATION PA-32R-301T, TURBO SARATOGA SP



**Piper Saratoga** 



Piper Seneca I



**Piper Seneca III** 



Figure 4-19. Center of gravity envelope for the Piper Seneca.

**Piper Seneca V** 

#### WEIGHT AND BALANCE



# 6.9 WEIGHT AND BALANCE DETERMINATION FOR FLIGHT (Continued)

C.G. Location (Inches aft of datum)

**Piper Malibu Meridian** 

.



**DIIVIUUIVI** PC-12/45 CG Envelope

Pilatus PC-12

## Quest Aircraft Company KODIAK 100 Series

## WEIGHT & BALANCE/EQUIPMENT LIST

# 6-17 WEIGHT AND MOMENT LIMITS

Use the following chart or table to determine if the weight and moment calculations from the Weight and Balance Loading Form are within limits.



#### Weight and Moment Limits

**Quest Kodiak** 

## Weight and Balance Charts (cont.)

**Twin Otter** 



# **Performance References for Validation** Standard Day Altimeter 29.92" Temperature 59°f / 15°c Note: SL=Sea Level / 5K=5,000ft Standard Lapse Rate of -2°C per 1000 ft

| ELEV | Aircraft                 | T/O<br>Weight | Speed(VNE)              | Cruise Pwr<br>25 "HG<br>2500 RPM        | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
|------|--------------------------|---------------|-------------------------|-----------------------------------------|----------------------------|---------------------|
|      | BEECHCRAFT               |               |                         |                                         |                            |                     |
| SL   | Beechcraft A36           | 3600 lbs      | 204 KTAS                | 165 KTAS                                | 56 KTAS                    | 1220 fpm            |
| 5K   |                          | 3600 lbs      | 204 KTAS                | 176 KTAS                                | 56 KTAS                    | 910 fpm             |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(V <sub>NE</sub> ) | 75% Pwr<br>Cruise<br>Speed              | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Beechcraft A36TC         | 3650 lbs      | 246 KTAS                | 223 KTAS                                | 66 KTAS                    | 1165 fpm            |
| 5K   |                          | 3650 lbs      | 246 KTAS                | 206 KTAS                                | 66 KTAS                    | 920 fpm             |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(VNE)              | Cruise Pwr<br>22 "HG<br>2200 RPM        | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Beechcraft Baron 55      | 5100 lbs      | 223 KTAS                | 154 KTAS                                | 73 KTAS                    | 1700 fpm            |
| 5K   |                          | 5100 lbs      | 223 KTAS                | 167KTAS                                 | 73 KTAS                    | 1240 fpm            |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(V <sub>NE</sub> ) | Cruise Pwr<br>Full Throttle<br>2300 RPM | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Beechcraft Baron G58/58A | 5500 lbs      | 223 KTAS                | 195 KTAS                                | 73 KTAS                    | 1700 fpm            |
| 5K   |                          | 5500 lbs      | 223 KTAS                | 203 KTAS                                | 73 KTAS                    | 1310 fpm            |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(VNE)              | 75% Pwr<br>Cruise<br>Speed              | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Beechcraft Travelair 95  | 4200 lbs      | 208 KTAS                | 154 KTAS                                | 61 KTAS                    | 1250 fpm            |
| 5K   |                          | 4200 lbs      | 208 KTAS                | 162 KTAS                                | 61 KTAS                    | 910 fpm             |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(VNE)              | Cruise Pwr<br>24 "HG<br>2300 RPM        | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Beechcraft Duchess 76    | 3900 lbs      | 194 KTAS                | 143 KTAS                                | 60 KTAS                    | 1275 fpm            |
| 5K   |                          | 3900 lbs      | 194 KTAS                | 154 KTAS                                | 60 KTAS                    | 950 fpm             |
|      | CESSNA                   |               |                         |                                         |                            |                     |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(VNE)              | 75%- 77%<br>Pwr Cruise<br>Speed         | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Cessna 152               | 1670 lbs      | 145 KTAS                | 100 KTAS                                | 35 KTAS                    | 715 fpm             |
| 4K   |                          | 1670 lbs      | 145 KTAS                | 104 KTAS                                | 35 KTAS                    | 505 fpm             |
| SL   | Cessna 172P              | 2400 lbs      | 152 KTAS                | 112 KTAS                                | 46 KTAS                    | 700 fpm             |
| 5K   |                          | 2400 lbs      | 152 KTAS                | 118 KTAS                                | 46 KTAS                    | 470 fpm             |
| SL   | Cessna 172S              | 2550 lbs      | 160 KTAS                | 117 KTAS                                | 48 KTAS                    | 730 fpm             |
| 5K   |                          | 2550 lbs      | 160 KTAS                | 121 KTAS                                | 48 KTAS                    | 550 fpm             |
| SL   | Cessna 182T              | 2950 lbs      | 172 KTAS                | 150 KTAS                                | 52 KTAS                    | 890 fpm             |
| 5K   |                          | 2950 lbs      | 172 KTAS                | 159 KTAS                                | 52 KTAS                    | 665 fpm             |
| ELEV | Aircraft                 | T/O<br>Weight | Speed(V <sub>NE</sub> ) | Cruise Pwr<br>24 "HG<br>2400 RPM        | Stall Speed<br>Landing CFG | Power Climb<br>Rate |
| SL   | Cessna T182T             | 3100 lbs      | 170 KTAS                | 129 KTAS                                | 50 KTAS                    | 1040 fpm            |

| 5K   | Cessna T182T       | 3100 lbs | 170 KTAS                | 138 KTAS             | 50 KTAS                    | 963 fpm     |
|------|--------------------|----------|-------------------------|----------------------|----------------------------|-------------|
| ELEV | Aircraft           | T/O      | Speed(VNE)              | Cruise Pwr           | Stall Speed                | Power Climb |
|      |                    | Weight   | -                       | 24 "HG               | Landing CFG                | Rate        |
|      |                    | 2000 11  |                         | 2500 RPM             |                            | 000 (       |
| SL   | Cessna T206H       | 3600 lbs | 180 KTAS                | 127 KTAS             | 57 KTAS                    | 990 fpm     |
| 5K   |                    | 3600 lbs | 180 KTAS                | 140 KTAS             | 57 KTAS                    | 705 fpm     |
| ELEV | Aircraft           | T/O      | Speed(V <sub>NE</sub> ) | 75%- 77%             | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | Pwr Cruise<br>Speed  | Landing CFG                | Rate        |
| SL   | Cessna 210M        | 3800 lbs | 195 KTAS                | 158 KTAS             | 59 KTAS                    | 860 fpm     |
| 5K   |                    | 3800 lbs | 195 KTAS                | 170 KTAS             | 59 KTAS                    | 615 fpm     |
| ELEV | Aircraft           | T/O      | Speed(VNE)              | Cruise Pwr           | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | 24 "HG               | Landing CFG                | Rate        |
|      |                    | _        |                         | 2500 RPM             |                            |             |
| SL   | Cessna T206H       | 3600 lbs | 180 KTAS                | 127 KTAS             | 56 KTAS                    | 990 fpm     |
| 5K   |                    | 3600 lbs | 180 KTAS                | 140 KTAS             | 56 KTAS                    | 705 fpm     |
| ELEV | Aircraft           | T/O      | Speed(V <sub>NE</sub> ) | Cruise Pwr           | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | 31.5 "HG<br>2450 RPM | Landing CFG                | Rate        |
| SL   | Cessna 414A        | 6750 lbs | 232 KTAS                | 174 KTAS             | 72 KTAS                    | 1540 fpm    |
| 5K   |                    | 6750 lbs | 232 KTAS                | 182 KTAS             | 72 KTAS                    | 1425 fpm    |
| ELEV | Aircraft           | T/O      | Speed(VNE)              | Cruise Pwr           | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | 32.5 "HG             | Landing CFG                | Rate        |
|      |                    | _        |                         | 1900 RPM             |                            |             |
| SL   | Cessna 421C        | 7450 lbs | 238 KTAS                | 166 KTAS             | 74 KTAS                    | 1950 fpm    |
| 5K   |                    | 7450 lbs | 238 KTAS                | 195 KTAS             | 74 KTAS                    | 1750 fpm    |
|      |                    |          |                         |                      |                            |             |
| ELEV | Aircraft           | T/O      | Speed(VNE)              | 75% PWR<br>Cruise    | Stall Speed<br>Landing CFG | Power Climb |
|      |                    | Weight   |                         | Speed                | Lanung CFG                 | Rate        |
|      | Mooney             |          |                         |                      |                            |             |
| SL   | Diamond DA-20      | 1764 lbs | 159 KTAS                | 130 KTAS             | 45 KTAS                    | 930 fpm     |
| 5K   |                    | 1764 lbs | 159 KTAS                | 138KTAS              | 45 KTAS                    | 633 fpm     |
| ELEV | Aircraft           | T/O      | Speed(VNE)              | 92% PWR<br>Cruise    | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | Speed                | Landing CFG                | Rate        |
| SL   | Diamond DA-40NG    | 2888 lbs | 172 KTAS                | 154 KTAS             | 62 KTAS                    | 777 fpm     |
| 5K   |                    | 2888 lbs | 172 KTAS                | 162 KTAS             | 62 KTAS                    | 720 fpm     |
| SL   | Diamond DA-42NG    | 4407 lbs | 188 KTAS                | 155 KTAS             | 59 KTAS                    | 1337 fpm    |
| 5K   |                    | 4407 lbs | 188 KTAS                | 159 KTAS             | 59 KTAS                    | 1200 fpm    |
| ELEV | Aircraft           | т/о      | Speed(VNE)              | 75%Cruise            | Stall Speed                | Power Climb |
|      |                    | Weight   |                         | Speed                | Landing CFG                | Rate        |
|      | Mooney             |          |                         |                      |                            |             |
| SL   | Mooney M20J        | 2900 lbs | 195 KTAS                | 155 KTAS             | 56 KTAS                    | 795 fpm     |
| 5K   |                    | 2900 lbs |                         | 162 KTAS             | 56 KTAS                    | 520 fpm     |
| SL   | Mooney Encore M20K | 2900 lbs | 196 KTAS                | 188 KTAS             | 58 KTAS                    | 1080 fpm    |
| 5K   |                    | 2900 lbs |                         | 196 KTAS             | 58 KTAS                    | 800 fpm     |
|      | PIPER              |          |                         |                      |                            |             |
| SL   | Piper Warrior II   | 2325 lbs | 153 KTAS                | 107 KTAS             | 50 KTAS                    | 710 fpm     |
| 5K   |                    | 2325 lbs |                         | 114 KTAS             | 50 KTAS                    | 475 fpm     |
| 5K   |                    | 2325 lbs |                         | 114 KTAS             | 50 KTAS                    | 475 fpm     |

| ELEV     | Aircraft                    | T/O<br>Weight          | Speed(V <sub>NE</sub> ) | 75%Cruise<br>Speed   | Stall Speed<br>Landing CFG    | Power Climb<br>Rate              |
|----------|-----------------------------|------------------------|-------------------------|----------------------|-------------------------------|----------------------------------|
|          |                             |                        |                         |                      |                               |                                  |
| SL       | Piper Archer III            | 2550 lbs               | 148 KTAS                | 121 KTAS             | 52 KTAS                       | 690 fpm                          |
| 5K       |                             | 2550 lbs               | 148 KTAS                | 126 KTAS             | 52 KTAS                       | 490 fpm                          |
| SL       | Piper Arrow III             | 2750 lbs               | 186 KTAS                | 133 KTAS             | 55 KTAS                       | 825 fpm                          |
| 5K       |                             | 2750 lbs               | 186 KTAS                | 140 KTAS             | 55 KTAS                       | 600 fpm                          |
| SL       | Piper Arrow IV Turbo        | 2900 lbs               | 186 KTAS                | 132 KTAS             | 58 KTAS                       | 950 fpm                          |
| 5K       |                             | 2900 lbs               | 186 KTAS                | 142 KTAS             | 58 KTAS                       | 900 fpm                          |
| SL       | Piper Seneca I              | 4200 lbs               | 189 KTAS                | 150 KTAS             | 60 KTAS                       | 1350 fpm                         |
| 5K       |                             | 4200 lbs               | 189 KTAS                | 160 KTAS             | 60 KTAS                       | 1000 fpm                         |
| SL       | Piper Seneca III            | 4407 lbs               | 205 KTAS                | 160 KTAS             | 63 KTAS                       | 1200 fpm                         |
| 5K       |                             | 4407 lbs               | 205 KTAS                | 168 KTAS             | 63 KTAS                       | 1050 fpm                         |
| SL       | Piper Seneca V              | 4750 lbs               | 217 KTAS                | 197 KTAS             | 60 KTAS                       | 1350 fpm                         |
| 5K       | •                           | 4750 lbs               | 217 KTAS                | 205 KTAS             | 60 KTAS                       | 1000 fpm                         |
| SL       | Piper Seminole              | 3800 lbs               | 202 KTAS                | 152 KTAS             | 59 KTAS                       | 1350 fpm                         |
| 5k       |                             | 3800 lbs               | 202 KTAS                | 160 KTAS             | 59 KTAS                       | 950 fpm                          |
| SL       | Piper Navajo Chieftain      | 7000 lbs               | 236 KTAS                | 179 KTAS             | 66 KTAS                       | 1150 fpm                         |
| 5E       |                             | 7000 lbs               | 236 KTAS                | 185 KTAS             | 66 KTAS                       | 1025 fpm                         |
| SL       | Piper Malibu                | 4340 lbs               | 200 KTAS                | 135 KTAS             | 60 KTAS                       | 1300 fpm                         |
| 5K       |                             | 4340 lbs               | 200 11/10               | 149 KTAS             | 60 KTAS                       | 1250fpm                          |
| 51       |                             |                        | BOPROP AIR              |                      |                               | 120010111                        |
|          |                             |                        |                         | Max                  |                               |                                  |
| ELEV     | Aircraft Type               | MGTOW                  | Speed(V <sub>NE</sub> ) | Cruise Pwr<br>Mid Wt | Stall Speed<br>Landing CFG    | Power Climb<br>Rate              |
| SL       | Beechcraft A100             | 11500 lbs              | 226 KIAS                | 218 KIAS             | 73 KIAS                       | 1963 fpm                         |
| 5K       |                             | 11500 lbs              | 226 KIAS                | 226 KIAS             | 73 KIAS                       | 1850 fpm                         |
| SL       | Beechcraft B200             | 12500 lbs              | 259 KIAS                | 249 KIAS             | 75 KIAS                       | 2400 fpm                         |
| 5K       |                             | 12500 lbs              | 259 KIAS                | 258 KIAS             | 75 KIAS                       | 2300 fpm                         |
| SL       | Beechcraft C90              | 10100 lbs              | 226 KIAS                | 215 KIAS             | 78 KIAS                       | 2100 fpm                         |
| 5K       |                             | 10100 lbs              | 226 KIAS                | 223 KIAS             | 78 KIAS                       | 1900 fpm                         |
| SL       | Beechcraft 1900C            | 16600 lbs              | 248 KIAS                | 247 KIAS             | 89 KIAS                       | 2500 fpm                         |
| 5K<br>SL | Beechcraft 1900D            | 16600 lbs              | 248 KIAS                | 244 KIAS             | 89 KIAS                       | 2300 fpm                         |
|          | Beechchait 1900D            | 17120 lbs<br>17120 lbs | 248 KIAS                | 247 KIAS             | 89 KIAS                       | 2625 fpm                         |
| 5K<br>SL | Cessna Caravan 208B         | 8750 lbs               | 248 KIAS<br>175 KTAS    | 255 KIAS<br>179 KTAS | 89 KIAS<br>61 KTAS            | 2450 fpm<br>975 fpm              |
| 5K       |                             |                        | 175 KTAS                | 173 KTAS<br>183 KTAS | 61 KTAS                       | 865 fpm                          |
| SL       | De-Havilland Twin Otter 300 | 8750 lbs<br>12500 lbs  | 202 KTAS                | 166 KTAS             | 58 KTAS                       | 1600 fpm                         |
| 5L<br>5K |                             | 12500 lbs              | 202 KTAS<br>202 KTAS    | 161 KTAS             | 58 KTAS                       | 1450 fpm                         |
| SL       | Pilatus PC-12               | 12300 lbs              | 202 KTAS<br>285 KTAS    | 285 KTAS             | 67 KTAS                       | 1430 fpm                         |
| 5K       |                             | 10450 lbs              |                         | 203 KTAS<br>293 KTAS | 67 KTAS                       | 1920 fpm                         |
| 31       |                             | 9000 lbs               | 285 KTAS<br>283 KTAS    | 293 KTAS<br>269 KTAS | 77 KTAS                       | 2800 fpm                         |
| SI       | Piner ( nevenne             |                        |                         | 200 KIAJ             | 77 KIAJ                       | 2000 ipili                       |
| SL<br>5K | Piper Cheyenne              |                        |                         |                      | 77 KTAS                       | 2695 fpm                         |
| 5K       |                             | 9000 lbs               | 283 KTAS                | 278 KTAS             | 77 KTAS                       | 2695 fpm                         |
|          | Piper Cheyenne              |                        |                         |                      | 77 KTAS<br>77 KTAS<br>77 KTAS | 2695 fpm<br>2800 fpm<br>2695 fpm |

| ELEV | Aircraft            | T/O       | Speed(VNE) | 1000 FT-LB | Stall Speed          | Power Climb |
|------|---------------------|-----------|------------|------------|----------------------|-------------|
|      |                     | Weight    |            | Torque     | Landing CFG          | Rate        |
| SL   | Piper Meridian      | 5092 lbs  | 260 KTAS   | 186 KTAS   | 61 KTAS              | 1100 fpm    |
| 5K   |                     | 5092 lbs  | 260 KTAS   | 196 KTAS   | 61 KTAS              | 950 fpm     |
| ELEV | Aircraft            | T/O       | Speed(VNE) | 75% Cruise | Stall Speed          | Power Climb |
|      |                     | Weight    |            | Speed      | Landing CFG          | Rate        |
| SL   | Quest Kodiak        | 7255 lbs  | 183 KTAS   | 172 KTAS   | 60 KTAS              | 1371 fpm    |
| 5K   |                     | 7255 lbs  | 183 KTAS   | 180 KTAS   | 60 KTAS              | 1141 fpm    |
|      | JET AIRCRAFT        |           |            |            |                      |             |
| ELEV | Aircraft Type       | MGTOW     | Speed(VNE) | Max        | Stall Speed          | Power Climb |
|      |                     |           |            | Cruise Pwr | Landing CFG<br>MGTOW | Rate        |
| SL   | Cessna Citation 501 | 11850 lbs | 355KTAS    | 325 KTAS   | 82 KTAS              | 2900 fpm    |
| 5K   |                     | 11850 lbs |            | 335 KTAS   | 82 KTAS              | 2675 fpm    |
| SL   | Cessna Citation 550 | 14800 lbs | 385KTAS    | 377 KTAS   | 82 KTAS              | 3370 fpm    |
| 5K   |                     | 14800 lbs |            | 389 KTAS   | 82 KTAS              | 3150 fpm    |

**Notes regarding performance:** The indicated airspeed at which a fixed-wing aircraft stalls varies with the weight of the aircraft but does not vary significantly with altitude.

For light aircraft operating below 10, 000 feet, it can usually be assumed that Vne is a fixed IAS.

**RULE OF THUMB:** A normally aspirated aircraft engine loses approximately 3.5% hp per 1,000 feet increase in density altitude.

# Visual Systems



The Modular Flight Deck Visual system comes standard with an integrated 225 degree x 40 degree (vertical) Ultra High Definition 120 Hz LED monitors that is docked to the flight deck.



Panoramic Integrated Visual System (Five 40" 1080 40 Inch Monitors)



| Functions and Maneuvers                           | Yes, No, N/A |
|---------------------------------------------------|--------------|
| a. Preparation for Flight                         |              |
| (1) Flight Deck Preflight                         | Yes          |
| b. Pre-Takeoff                                    |              |
| (1) Engine start                                  | Yes          |
| (2) Brake operation                               | Yes          |
| (3) Taxi operations and markings                  | Yes          |
| c. Takeoff                                        |              |
| (1) AIRPLANE Takeoff                              |              |
| (i) Power plant run-up and checks                 | Yes          |
| (ii) Acceleration characteristics                 | Yes          |
| (iii) Nose wheel and rudder steering              | Yes          |
| (iv) Effect of headwind/crosswind                 | Yes          |
| (v) Instrument check                              | Yes          |
| (vi) Landing gear, wing flap operation            | Yes          |
| d. In-Flight Operation                            |              |
| (1) AIRPLANE In-Flight Operation                  |              |
| Runway and Takeoff                                | Yes          |
| (a) Normal and imum Performance Takeoffs          | Yes          |
| (b) Short and Soft Field Takeoff and Departures   | Yes          |
| (c) Normal and imum Performance Climbs            | Yes          |
| (d) Engine Failure and Emergency Procedures       | Yes          |
| Cruise                                            |              |
| (a) Performance Characteristics (speed vs. power) | Yes          |

| D Functions and Maneuvers Checklist (cont.)                                                     |     |
|-------------------------------------------------------------------------------------------------|-----|
| (b) Normal, Climbing, and Descending Turns                                                      | Yes |
| (c) Performance Steep Turns                                                                     | Yes |
| (d) Approach to Stalls, i.e. Stall Warning,                                                     | Yes |
| Cruise, Takeoff & Approach and Landing Configurations                                           |     |
| (e) In Flight Engine Shutdown (Multi-Engine only)                                               | Yes |
| (f) In Flight Engine Start (Multi-Engine only)                                                  | Yes |
| pproach and Landing                                                                             |     |
| (a) Normal and Partial/No Flap Approach and Landings                                            | Yes |
| (b) Short and Soft Field Approach and Landings                                                  | Yes |
| (c) Single Engine Approach and Landing (Multi-Engine)                                           | Yes |
| Instrument Approaches                                                                           | Ver |
| ) Non-Precision                                                                                 | Yes |
| (i) GPS- WAAS (optional)                                                                        | Yes |
| (ii) GPS- LAAS (optional)                                                                       | Yes |
| (iii) All Engines Operating                                                                     | Yes |
| (iv) One or More Engines Inoperative (as applicable)                                            | Yes |
| (v) Approach Procedures (NDB, VOR, DME Arc, LOC/BC, LOC, LDA, SDF, ASR, LNAV/VNAV, GPS and LPV) | Yes |
| 2) Precision                                                                                    | Yes |
| (i) ILS                                                                                         | Yes |
| (ii) Effects of Crosswind                                                                       | Yes |
| (iii) With engine(s) inoperative                                                                | Yes |
| (iv) Missed Approach                                                                            | Yes |
| (A) Normal                                                                                      | Yes |
| (B) With Engine(s) inoperative (as applicable)                                                  | Yes |

| (C) From Steep Glide Slope                                                                 | Yes |
|--------------------------------------------------------------------------------------------|-----|
|                                                                                            |     |
| . Surface Operations (AIRPLANE-Post Landing)                                               |     |
| (1) Landing roll                                                                           | Yes |
| (2) Braking Operation                                                                      | Yes |
| (3) Reverse thrust Operation, if applicable                                                | Yes |
| . Any Flight Phase                                                                         |     |
| (1) Aircraft and Power Plant Systems Functions and Simulated Failures                      |     |
| (i) Electrical                                                                             | Yes |
| (ii) Flaps (Airplane)                                                                      | Yes |
| (iii) Fuel & Oil                                                                           | Yes |
| (iv) Landing Gear                                                                          | Yes |
| (2) Flight Management and Guidance Systems                                                 | Yes |
| (i) Two Axis Auto Pilot (AATD only)                                                        | Yes |
| (ii) Flight Director (AATD only) / System Displays                                         | Yes |
| (iii) Navigation Systems and optional display configurations                               | Yes |
| (iv) Stall Warning Avoidance (Airplane)                                                    | Yes |
| (v) Multi-Function Displays PFD/MFD                                                        | Yes |
| (3) Airborne Procedures                                                                    | Yes |
| (i) Holding                                                                                | Yes |
| (4) Simulated Turbulence in Flight                                                         | Yes |
| (5) Engine Shutdown and Parking                                                            | Yes |
| (i) Systems operation                                                                      | Yes |
| (ii) Parking Brake Operation (Airplane)                                                    | Yes |
| . Training device capable of replicating any emergency procedures provided in the Aircraft | Yes |

# **Important Notes:**

Any changes or modifications to this device which have not been reviewed, evaluated, and approved in writing by General Aviation and Commercial Division, AFS-800 may terminate FAA approval of this aviation training device.

Any modification to this device without consent from manufacture will void the warranty.

# **Contact Information:**

| Contact for Precision Flight Controls, Inc. | Contact for X-Plane           |
|---------------------------------------------|-------------------------------|
| Mike Altman, CEO                            | Austin Meyer                  |
| 2747 Mercantile, STE 100                    | email: Austin@x-plane.com     |
| Rancho Cordova CA 95742                     | website:www.x-plane.com       |
| Phone: 916-414-1310 Ext 12                  |                               |
| Fax: 916-414-1326                           | Contact for Lockheed Prepar3d |
| email: <u>mike@flypfc.com</u>               | email: enquiries@prepar3d.com |
| website: www.flypfc.com                     | website: www.prepar3d.com     |
|                                             |                               |
|                                             |                               |

Precision Flight Controls<sup>™</sup>, P3D<sup>™</sup>, Jeppesen<sup>™</sup>, X-Plane<sup>™</sup>, Quantum3d<sup>™</sup>, and Laminar Research<sup>™</sup> are trademarks of their respective companies.